
Mazezam is NP-complete

Ben North
ben@redfrontdoor.org

1 September, 2008

Problem statement

We claim that the game Mazezam is NP-complete, in the sense that any NP problem can be
reduced to asking the question ‘is there a solution to this mazezam level?’ for a particular
level constructed (in polynomial time) from the given NP problem.

First reduce the NP problem to an equivalent Boolean satisfiability problem, where the
Boolean formula is in conjunctive normal form, and each clause has at most three variables.
This reduction can be done because the latter problem, ‘3SAT’, is NP-complete. To show
NP-completeness of Mazezam, we must be able to reduce a question of the form

‘Is there an assignment of True/False to the variables p1, p2, . . . , pn under which
the formula

φ = c1 ∧ c2 ∧ · · · ∧ cK
evaluates to True, where each clause ck is of the form

ck = `k1 ∨ `k2 ∨ `k3

and each literal `km is of one of the forms

`km = pi or `km = ¬pi

for some i depending on k and m?’

to the question of solubility of a Mazezam level constructed from the Boolean formula φ in
polynomial time.



Summary of approach

Each clause in φ will be represented in the Mazezam level by a section which the player must
navigate from top to bottom, with a corridor to the right of it which brings the player back
up to the top. Being able to navigate a section will correspond to the clause represented by
that section evaluating to True. The player must navigate all of these sections in sequence,
which corresponds to the conjunction of all clauses evaluating to True. In this example,
there are three clause-sections; the details of what goes in the sections will be filled in
shortly:

in→ →out

c1 c2 c3

Each clause ck, being a disjunction of three literals, will be represented by three parallel
vertical channels, the mth of which will be passable iff `km evaluates to True. The player
will be able to pass downwards through the clause’s section iff she is able to pass through
at least one of the literals’ channels. This effects the required disjunction:

from previous section→ →to next section

`k1 `k2 `k3

Finally, the channel representing `km will be made up of one cell χkmi per variable in φ.
If `km = pi, then the cell χkmi corresponding to pi will be passable iff pi is assigned the value

2



True; if `km = ¬pi , then the cell χkmi will be passable iff pi is assigned the value False; if
`km is of neither of these forms, the cell χkmi will be passable whatever the value assigned
to pi. Thus the player will be able to pass downwards through the channel corresponding
to `km iff `km evaluates to True. This example shows the mth channel for clause ck, in the
case where there are five variables involved in φ:

channel entrance
↓

χkm1

χkm2

χkm3

χkm4

χkm5

↓
channel exit

Details of construction

Having described the scheme from the top down, we construct it from the bottom up.
The only (relevant) movable rows in the level will be those representing the variables

pi. Each such row will have exactly two possible positions, ‘left’ and ‘right’. If the row
representing pi is in the left position, it will represent the assignment of False to pi; if in
the right position, True.

We first look at the construction of the cells χkmi. It will have the following general
shape, shown between sections of the two walls of its channel. The darker row of squares
indicates the movable row corresponding to the variable pi; it is shown in its ‘left’ position,
and can also be moved one square to the right.

cell entrance
↓

a b

↓
cell exit

The square a is occupied by a block iff `km = ¬pi; the square b is occupied iff `km = pi.
Therefore, if `km is neither of these (i.e., it involves pi′ for some i′ 6= i), squares a and b are
both left unoccupied.

3



The effect of this on the player’s ability to pass downwards through the cell is illustrated
for the six possible cases:

`km = pi `km = ¬pi otherwise

pi = False (row left)

pi = True (row right)

Here it can be seen that the player can always pass through all cells χkmi, except possibly
the one cell for which `km involves variable pi. For that cell, the player can pass through
precisely when `km evaluates to True.

Note also that the player cannot pass through unless the dark row is left in the same
position (left or right) as it was when the player entered the cell. Although the player can
move the row while in the cell, for example by pushing the row rightwards when passing
through the ‘`km = ¬pi, pi = False’ case, this would result in a situation like the following,
where the player’s position is marked with ‘×’:

×

To proceed, the player has no choice but to push the row leftwards again, to where it was
before she entered the cell. This argument applies to all cases.

The upward ‘corridors’ are constructed along the same lines as the cells where the player
can pass for either truth-value assignment. This is necessary so that we can apply the above
argument to show that the movable rows are in the same position after the player has passed
through the corridor as before she has passed through.

4



Remaining details

The player must have some way of setting the positions of the movable rows corresponding
to the variables. This is done by providing a section down the left-hand edge of the level
where the player can move freely, setting each ‘variable’ row to its left or right position as
desired:

Also, the player must be provided with means of access and egress from the level, in a way
which does not compromise the construction. This is done by providing a strip across the
top of the level:

in→ →out

Note that although the very top row can be moved rightwards by the player, if she does so,
it blocks the exit. We can therefore assume that in a successful solution to the level, the
top row does not move.

5



Final level example

Putting this all together, the following Mazezam level represents the question of whether
there is an assignment of truth values to the variables p1, p2, . . . , p5 which causes the formula

φ = (p1 ∨ ¬p2 ∨ p3) ∧ (p2 ∨ p4 ∨ ¬p5) ∧ (p1 ∨ p3 ∨ p5)

to evaluate to True:

In this small example, we can see by inspection that setting

p1 = True; p2 = True; p3 = True; p4 = False; p5 = False

(among other assignments) will cause φ to evaluate to True. Indeed, moving the rows, by
means of the left-hand section to represent this assignment, gives this configuration of the
level, which can then be traversed by the player:

6


