
An unusual primality test

Ben North

November 5, 2012

1 The Computist Quiz

The following programming problem is one of several on a freely-available set of
interesting questions [3]:

Amphibious Discursion. A predicate on positive integers:

boolean isToad(int n)

{

return ((n == 2)

|| (n == frog(4, floor((n - 1) / 2), 1, 0) - 1));

}

is defined with the aid of the following helper method:

int frog(int q, int r, int s, int t)

{

if (r < t)

return 0;

else if (r == t)

return 1;

else if (q == 0)

return 0;

else

return (frog(q, r, s + 1, s + t)

+ frog(q - 1, r - t, 1, 0));

}

Which integers are toads? Describe what the frog method does. Can
you explain why this code works?

1.1 Analysis of the function frog

After some experimentation, we can form and prove the following conjectures:

1

1.1.1 Argument r is never negative

We prove this by induction on the call-stack depth. The specification says that
isToad is a predicate on positive integers, so we have that n > 0 within isToad.
Therefore ⌊

n− 1

2

⌋
≥ 0

and we have the base case.
Otherwise, the immediate caller of frog is again frog, and by the inductive

hypothesis, r ≥ 0 there. The first recursive call, receiving the same r, therefore
satisfies the hypothesis. By the time we have reached the recursive calls, we
have r > t. (The other two cases, r = t and r < t, lead to an early return.)
Therefore r − t > 0 and the hypothesis is satisfied for the second recursive call
also.

1.1.2 Argument t to frog receives triangular numbers

The triangular numbers are

T0 = 0; T1 = 1; T2 = 3; T3 = 6; . . . ,

and in general

Tn =
1

2
n(n+ 1).

We claim that in all calls to frog, the argument t is the triangular number Tn,
where s = n+ 1. We prove this by induction on the call-stack depth.

Base case: If there is only one call to frog, then the immediate caller must
have been isToad, and the arguments it supplies to frog are t = 0 = T0 and
s = 1 = 0 + 1, so the claim is true in this base case.

Inductive step: For deeper call stacks, the immediate caller is frog, and in
the calling frame, by the inductive hypothesis, we have t = Tn and s = n+ 1 for
some n. We look at the two recursive calls to frog separately:

• frog(q, r, s + 1, s + t)

Writing s′ and t′ for the values of the arguments s and t received by this
invocation of frog, we have

s′ = s+ 1 = n+ 2;

t′ = t+ s = Tn + (n+ 1) = Tn+1.

The claim is true, with n′ = n+ 1.

2

• frog(q - 1, r - t, 1, 0)

Here, t = 0 and s = 1, as in the base case; the claim is true.

1.1.3 Function frog counts sums of q triangular numbers

Under the conditions established by the previous observation, the claim is that
frog(q, r, s, t) is the number of ordered q-tuples of triangular numbers such
that the sum of the elements of the tuple is r, and such that the first element of
the tuple is at least t.

When q is zero First note that the only way we can get a call with q = 0 is
via the second recursive call within frog. (The original call, from toad, passes
q = 4. The first recursive call cannot have q = 0 because the third early return

would have been triggered if so.)

In the second recursive call, t receives 0. We know r ≥ 0, so frog returns 1
exactly when r = t = 0 (via the second if); otherwise the third if causes frog

to return 0. Note that we never reach the recursive calls if q = 0.

This satisfies the claim — the empty sum is the one and only way to express
zero as a sum of zero triangular numbers, and there is no way to express any
r > 0 as an empty sum.

When q is positive The structure of the code reflects the following argument
for counting the number of ways of writing r as a sum of q triangular numbers
such that the first one is at least t:

• If r < t, then there are no such sums.

• If r = t, then there is exactly one such sum, namely

r = t+ 0 + 0 + · · ·+ 0,

where there are (q − 1) zeros. (Including possibly no zeros, if q = 1; recall
here we are considering positive q.)

• If r > t, then we partition the set of q-term sums whose first term is at
least t into two disjoint sets. In the following, all xi are always triangular
numbers. We have:

{(x1, x2, . . . , xq) :
∑
xi = r and x1 ≥ t}

= {(x1, x2, . . . , xq) :
∑
xi = r and x1 > t}

∪ {(x1, x2, . . . , xq) :
∑
xi = r and x1 = t}.

3

Because t = Tn for some triangular number Tn (in fact n = s− 1), and x1
must be a triangular number also, x1 > t = Tn iff x1 ≥ Tn+1, and so the
first set on the rhs can be written

{(x1, x2, . . . , xq) :
∑
xi = r and x1 > Tn}

= {(x1, x2, . . . , xq) :
∑
xi = r and x1 ≥ Tn+1}.

Its size is therefore calculated by the first recursive call:

frog(q, r, s + 1, s + t)

because t+ s gives the next triangular number after t, as shown in §1.1.2.

In counting the elements of the second set,

{(x1, x2, . . . , xq) :
∑
xi = r and x1 = t},

we are looking for sums of the form

r = t+ x2 + · · ·+ xq,

i.e.,

r − t = x2 + · · ·+ xq,

where there are now q−1 terms on the rhs, with no restriction on the first
term. Equivalently, we require that the first term is at least zero. Such
sums are counted by the second recursive call

frog(q - 1, r - t, 1, 0).

To formally demonstrate that the recursion terminates would require induction
over q and an inner induction over r− t, but the nub of the argument is captured
by considering the two recursive calls separately:

• frog(q, r, s + 1, s + t)

Because r remains fixed, and t receives consecutive triangular numbers,
there will come a call when t = Tn ≥ r, at which point one of the first two
return clauses will be hit.

• frog(q - 1, r - t, 1, 0)

Here, q decreases by one on each recursive call, and so there will come a
call when q = 0, at which point the third return clause will be hit.

Both recursions will therefore terminate.

4

1.1.4 Result of call to frog within isToad

We introduce the notation

tk(n) = number of k-tuples (x1, x2, . . . , xk) such that

each xi is a triangular number and
∑
xi = n.

for the concept ‘how many ways n can be written as a sum of k triangular
numbers’. In counting the ways, the order of the sum matters. For example,
when finding t2(4), the sums 1 + 3 and 3 + 1 are counted separately.

The call to frog within isToad therefore computes

frog(4, floor((n - 1) / 2), 1, 0) = t4

(⌊
n− 1

2

⌋)
because the argument t = 0 places no restrictions on the size of the first trian-
gular number in the sums.

1.2 Analysis of the function isToad

We can now understand what the predicate isToad does — it is true for the
special case n = 2, or for those n satisfying

n = t4

(⌊
n− 1

2

⌋)
− 1. (1)

1.3 Empirical study of integers satisfying isToad

On writing and running a program to test whether isToad holds for integers
n = 1, 2, . . ., we find that isToad(n) is true for

n ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, . . .},

strongly suggesting that isToad(n) holds exactly when n is prime. This is
surprising, as there is no prima facie reason why counting sums of four triangular
numbers should be in any way connected with primality.

2 Evaluation of t4(n)

The key to understanding the behaviour of isToad is the following result:

t4(n) = σ(2n+ 1), (2)

where σ(m) is the sum of all (positive) divisors of m:

σ(m) =
∑
d|m

d.

5

The bulk of this note reproduces a proof of this result, but we now use it to
explain why isToad tests primality. We prove that

n = t4

(⌊
n− 1

2

⌋)
− 1 ≡ n is prime.

2.1 Special values of n

Within isToad, the special case of n = 2 is first correctly handled. The speci-
fication also notes that n > 0, so we next check the other special case, namely
n = 1. For this value of n, ⌊

n− 1

2

⌋
= 0,

so the test (1) is
1 =? t4(0)− 1

and, by (2), we have t4(0) = σ(1) = 1, because the only factor of 1 is 1. (To check,
there is exactly one way of writing zero as a sum of four triangular numbers,
namely 0 = 0 + 0 + 0 + 0.) The test therefore becomes 1 =? 0, which yields
false. The non-primality of 1 is correctly assessed.

2.2 General even n

Now suppose that n is even, and n > 2. We must establish that isToad returns
false for such n.

We have b(n− 1)/2c = (n/2)− 1, and so the test (1) is

n =? t4
(
(n/2)− 1

)
− 1

i.e., by (2),
n =? σ(n− 1)− 1. (3)

Now n− 1 is odd, and so might be prime. We consider the cases:

2.2.1 Composite n− 1

Suppose that n − 1 is not prime. In particular then, n − 1 ≥ 9. Let p be the
smallest prime factor of n − 1; we must have 3 ≤ p < n − 1. (Because n − 1 is
odd, its smallest prime factor cannot be 2.) Then, because 1 and n− 1 are also
distinct factors of n− 1,

σ(n− 1) ≥ 1 + 3 + (n− 1) = n+ 3,

and the rhs of (3) satisfies

σ(n− 1)− 1 ≥ n+ 2 > n,

so n 6= σ(n− 1)− 1, and the test (3) yields false, as required.

6

2.2.2 Prime n− 1

If, on the other hand, n − 1 is prime, then its factors are just 1 and n − 1, so
σ(n− 1) = n, and the test (3) becomes

n =? n− 1,

which yields false, as required.

2.3 General odd n

For n odd with n > 1, we have b(n− 1)/2c = (n− 1)/2, so the test is

n =? t4
(
(n− 1)/2

)
− 1

≡ n =? σ(n)− 1. (4)

Again, we consider the cases of prime and composite n separately.

2.3.1 Composite n

Having dealt with the special case n = 1, suppose n is odd and composite; so in
particular n ≥ 9. Then its smallest prime factor p must satisfy 3 ≤ p < n; then
n has distinct factors 1, p, and n (and probably others), and the same argument
as in §2.2.1 shows that the test (4) gives false, as required.

2.3.2 Prime n

Finally, if n is prime, then its factors are just 1 and n, so σ(n) = n+ 1, and the
test (4) becomes

n =? n

which yields true. This concludes the case analysis, and completes the expla-
nation of isToad’s behaviour.

3 Source of following proof

The presentation of the proof for t4(n) = σ(2n+1) below follows directly that in
Bruce C. Berndt’s book Number Theory in the Spirit of Ramanujan [1]. I have
extracted just the parts which are on the direct route to the result of interest,
and added some working.

Working is shown like this.

7

3.1 Justification of manipulations

As Berndt notes [1, p.9] in a particular case (interchanging a limit and an infinite
sum), various manipulations which, to be fully rigorous, require justification, are
carried out without such justification. We take the same approach in this note.

4 Infinite products

We use the following notation for certain infinite products:

(a; q)∞ =

∞∏
k=0

(1− aqk) = (1− a)(1− aq)(1− aq2) · · · .

There are a couple of manipulations of such expressions which we will use:

Interleaving By taking factors in turn from (q; q2)∞ and from (q2; q2)∞, we
see (q; q2)∞(q2; q2)∞ = (q; q)∞.

(q; q2)∞(q2; q2)∞ = (1− q) (1− q3) (1− q5) · · ·
× (1− q2) (1− q4) (1− q6) · · ·

= (1− q)(1− q2)(1− q3)(1− q4)(1− q5)(1− q6) · · ·
= (q; q)∞ (5)

Similar cases such as

(−q; q4)∞(−q3; q4)∞ = (−q; q2)∞;

(q2; q4)∞(q4; q4)∞ = (q2; q2)∞

follow in the same way. We can represent the general case as

(±qm; q2n)∞(±qm+n; q2n)∞ = (±qm; qn)∞,

where all ‘±’ take the same sign.

The argument can also be applied backwards, to ‘de-interleave’ one product
into two.

8

Difference of squares By taking, in pairs, one factor from (−q; q2)∞ and one
from (q; q2)∞, we see that the two products combine:

(−q; q2)∞(q; q2)∞ = (q2; q4)∞. (6)

(−q; q2)∞(q; q2)∞ = (1 + q) (1 + q3) (1 + q5) · · ·
× (1− q) (1− q3) (1− q5) · · ·

= (1− q2)(1− q6)(1− q10) · · ·
= (q2; q4)∞

Similar results can be demonstrated in the same way:

(−q2; q2)∞(q2; q2)∞ = (q4; q4)∞;

(−q2; q4)∞(q2; q4)∞ = (q4; q8)∞.

The general result is

(−qm; qn)∞(qm; qn)∞ = (q2m; q2n)∞,

and the argument can also apply backwards by factorising each difference of
squares.

5 The Jacobi triple product identity

A central result is the Jacobi triple product identity:

(−qz; q2)∞(−q/z; q2)∞(q2; q2)∞ =

∞∑
n=−∞

qn
2
zn. (7)

This is proved in Berndt’s book [1, theorem 1.3.3], but the following proof is
more direct; it is the one on Wikipedia, which gives Cameron [2] as its source.

Proof

By dividing by the (q2; q2)∞ factor, and then substituting q ← q1/2, the Jacobi
triple product identity can be expressed as∏

n>0

(1 + qn−1/2z)(1 + qn−1/2z−1) =

(∞∑
n=−∞

qn
2/2zn

)(∏
n>0

(1− qn)−1

)
.

and it is in this form that we prove it. To do so, we introduce the notion of the
‘Dirac sea’.

9

The Dirac sea

A ‘level’ is a half-integer, i.e., n+ 1/2 for some n ∈ Z. The ‘vacuum state’ is the
set of all negative levels. A ‘state’ is a set of levels whose symmetric difference
with the vacuum state is finite. The ‘energy’ of the state S is∑

{v : v > 0, v ∈ S} −
∑
{v : v < 0, v 6∈ S} (8)

and the ‘particle count’ of S is

|{v : v > 0, v ∈ S}| − |{v : v < 0, v 6∈ S}|. (9)

Each level can be thought of as a slot which can either hold a particle or not.
A particle in level v has energy v, where negative energy levels are included.
The vacuum state has particles in all the negative-energy slots:

0

5 3 1 1 3 5 7 9 117
2 2 2 2 2 2 2 2 2 2

9
2

11
2

The ‘energy’ of a state S is how much more energy its particles have in to-
tal than the vacuum state; its particle count is how many more particles it
has than the vacuum state. However, the vacuum state has infinite particle
count and infinite negative energy, so the expressions (8) and (9) calculate the
differences which at first sight are ‘∞−∞’.

Number of states with particle count l and energy m

An unordered choice of the presence of finitely many positive levels and the
absence of finitely many negative levels (relative to the vacuum) corresponds to
a state, so the generating function

∑
l,m s(l,m)qmzl for the number s(l,m) of

states with particle count l and energy m can be expressed as∑
l,m

s(l,m)qmzl =
∏
n>0

(1 + qn−1/2z)(1 + qn−1/2z−1).

For example, consider the state which, starting with the vacuum state, adds
particles to levels 1/2 and 5/2, and removes the particle from level −9/2:

10

0

5 3 1 1 3 5 7 9 117
2 2 2 2 2 2 2 2 2 2

9
2

11
2

It has particle count 2 − 1 = 1 and energy 1/2 + 5/2 − (−9/2) = 15/2. It
corresponds to choosing

• the q1/2z term from the (1 + q1/2z) factor;

• the q5/2z term from the (1 + q5/2z) factor;

• the q9/2z−1 term from the (1 + q9/2z−1) factor;

• and the 1 term from all other factors,

which multiply together to give q15/2z1. This choice will therefore contribute
a count of one to the overall q15/2z1 term, whose coefficient will be the total
number of states with energy 15/2 and particle count 1.

On the other hand, consider the states with l particles; the minimum-energy
such state has energy l2/2.

First take the case l > 0. The minimum-energy such state consists of placing
particles in the lowest-energy l positive levels; for example, with l = 4:

0

5 3 1 1 3 5 7 9 117
2 2 2 2 2 2 2 2 2 2

9
2

11
2

The minimum-energy l-particle state therefore has energy

1

2
+

3

2
+ · · ·+ 2l − 1

2
=
l2

2
.

A similar argument also applies for l < 0, where the minimum-energy state
removes particles from the highest-energy (i.e., least negative) l negative levels.
For example, the lowest-energy state having l = −3 is:

0

5 3 1 1 3 5 7 9 117
2 2 2 2 2 2 2 2 2 2

9
2

11
2

11

and the energy for general negative l is then given by the same calculation.

The case l = 0 is trivial — only the vacuum state itself has l = 0, and its
energy is zero.

Now consider the set of l-particle states with energy m. We have m ≥ l2/2, and
we put n = m− l2/2 ≥ 0. Each such state corresponds uniquely to a partition

λ1 ≥ λ2 ≥ · · · ≥ λj
λ1 + λ2 + · · · + λj = n

of n into j pieces (for some j to be explained shortly) as follows:
Given a partition of n, start with the minimum-energy state with l particles,

as above. Move the highest-energy particle up by λ1 levels (thereby increasing its
energy by λ1), the next highest particle up by λ2 levels, and so on, down to the
jth-highest particle, which is moved up λj levels. We have increased the energy
by λ1 + λ2 + · · · + λj = n, and so the resulting state has energy m = n + l2/2.
Thus j is the number of particles moved. The conditions

λ1 ≥ λ2 ≥ · · · ≥ λj

ensure that the particles neither ‘overtake’ nor ‘land on top of’ one another
during this process.

In the other direction, from any l-particle state with energy m we can find
the unique partition of n = m− l2/2 which produces it under this mechanism.

For example, consider the minimum-energy 4-particle state (note we have
translated our view so as to see more of the positive levels):

0

3 5 7 9 11 13 15 17 191
2 2 2 2 2 2 2 2 2 2

1
2

3
2

It has energy 8, and can be transformed into the following 4-particle state with
energy 23 (i.e., n = 23− 8 = 15):

0

3 5 7 9 11 13 15 17 191
2 2 2 2 2 2 2 2 2 2

1
2

3
2

12

as follows:

+5+4+4+2

which corresponds to the partition (taking the values from the highest-energy
particle down)

5 + 4 + 4 + 2 = 15.

To take another example, the following 4-particle state, also with energy 23,
corresponds to the partition 6 + 6 + 3 = 15, and so involves moving up only
the top three particles:

+6+6+3

We can therefore count the states having l particles and energy l2/2 + n by
counting the partitions of n. This is done by the partition function p(n). The
generating function

∑
l,m s(l,m)qmzl can therefore be written

∑
l,m

s(l,m)qmzl =
∑
l,n

p(n)ql
2/2+nzl =

(∞∑
l=−∞

ql
2/2zl

)∑
n≥0

p(n)qn

 .

13

We now write the generating function for the partition function in its product
form: ∑

n≥0
p(n)qn =

∏
k>0

(1− qk)−1.

The factor (1− qk)−1 can be written
∑∞

j=0 q
jk. Any given partition of n cor-

responds uniquely to a choice of one term from each such sum, where choosing
qjk corresponds to having j occurrences of the integer k in that partition of
n. We will choose a term other than 1 from only finitely many of the sums.

Counting the states with particle count l and energy m this way, then,∑
l,m

s(l,m)qmzl =

(∑
l

ql
2/2zl

)(∏
k>0

(1− qk)−1

)
,

and equating the two expressions for
∑

l,m s(l,m)qmzl gives Jacobi’s triple prod-
uct identity.

6 Generating square and triangular numbers

We define two generating functions; one which gives the square numbers and one
which gives the triangular numbers:

φ(q) =
∞∑

n=−∞
qn

2
= · · ·+ q9 + q4 + q + 1 + q + q4 + q9 + · · · ;

ψ(q) =
∞∑
n=0

qn(n+1)/2 = 1 + q + q3 + q6 + q10 + · · · .

The coefficient of qm in φ(q) is the ‘number of ways in which m is a square
number’; e.g., the coefficient of q4 is 2, because 4 = 22 = (−2)2. But there is at
most one way an integer can be a triangular number in the definition of ψ(q).

We also recall the notation

tk(n) = number of k-tuples of triangular numbers whose sum is n,

and introduce

rk(n) = number of k-tuples of integers whose sum-of-squares is n,

where the slightly convoluted definition of rk gives the same ‘double counting’
as in φ(q).

The connection between rk and φ, and between tk and ψ, is that

[φ(q)]k = φk(q) =
∑

rk(n)qn; [ψ(q)]k = ψk(q) =
∑

tk(n)qn.

14

6.1 Product forms

We can use the Triple Product Identity to find product forms for these. Setting
z = 1 immediately gives us

φ(q) = (−q; q2)2∞(q2; q2)∞, (10)

and with a little more work we find two representations for ψ:

ψ(q) = (−q; q2)∞(q4; q4)∞ (11)

=
(q2; q2)∞
(q; q2)∞

. (12)

We find (11), the product expression for ψ(q), by taking q ← q2 and z ← q−1

in (7). The rhs becomes

∞∑
n=−∞

(q2)n
2

(q−1)n =

∞∑
n=−∞

q2n
2

q−n =

∞∑
n=−∞

qn(2n−1).

Informally we see that this sum generates the triangular numbers:

n n(2n− 1)

−3 21 = T6
−2 10 = T4
−1 3 = T2

0 0 = T0
1 1 = T1
2 6 = T3
3 15 = T5

More formally, break the sum into
∑∞

n=−∞ =
∑0

n=−∞+
∑∞

n=1. In the first,
make the change of variable n = −m:

0∑
n=−∞

qn(2n−1) =

∞∑
m=0

q−m(−2m−1) =

∞∑
m=0

q(2m)(2m+1)/2 =

∞∑
k=0

k even

qk(k+1)/2,

and in the second, put n = m+ 1:

∞∑
n=1

qn(2n−1) =

∞∑
m=0

q(m+1)(2m+1) =

∞∑
m=0

q(2m+2)(2m+1)/2

=

∞∑
m=0

q(2m+1)[(2m+1)+1]/2 =

∞∑
k=0
k odd

qk(k+1)/2,

15

Bring the ‘even’ and ‘odd’ sums back together to find:

rhs =

∞∑
k=0

qk(k+1)/2 = ψ(q).

The lhs of the Jacobi triple product identity in this case is

(−q; q4)∞(−q3; q4)∞(q4; q4)∞.

We interleave the first two factors, giving (−q; q2)∞. We now have (11):

ψ(q) = (−q; q2)∞(q4; q4)∞.

To transform this to the ratio form, (12), consider (11)’s first factor, (−q; q2)∞.
We have (−q; q2)∞(q; q2)∞ = (q2; q4)∞, so (−q; q2)∞ = (q2; q4)∞/(q; q

2)∞.
Now we can express ψ(q) as

ψ(q) =
(q2; q4)∞(q4; q4)∞

(q; q2)∞
.

Interleave the two factors on the top, giving (q2; q2)∞, to prove (12):

ψ(q) =
(q2; q2)∞
(q; q2)∞

7 Sums of two squares

Recall the notation

rk(n) = number of k-tuples (x1, x2, . . . , xk) such that

each xi is an integer and
∑
x2i = n;

we also introduce the notation dj,k(n):

dj,k(n) = number of positive divisors d of n such that d ≡ j (mod k).

We can now count the number of ways to express an integer as the sum of two
squares by means of the following theorem:

Theorem

r2(n) = 4(d1,4(n)− d3,4(n)).

16

Proof

Put q ← q1/2 and z ← −a2q1/2 in the Jacobi triple product identity to get

(a2q; q)∞(a−2; q)∞(q; q)∞ =
∞∑

n=−∞
qn

2/2(−a2q1/2)n =
∞∑

n=−∞
(−1)na2nqn(n+1)/2.

In (a−2; q)∞, multiply by a, and pull out the first factor, (1− a−2):

a(a−2; q)∞ = (a− a−1)(a−2q; q)∞

and hence

(a− a−1)(a2q; q)∞(a−2q; q)∞(q; q)∞ = a(a2q; q)∞(a−2; q)∞(q; q)∞

=

∞∑
n=−∞

(−1)na2n+1qn(n+1)/2

=

 ∞∑
n=−∞
n even

+
∞∑

n=−∞
n odd

 (−1)na2n+1qn(n+1)/2.

Make the change of variables n = 2m in the first sum, and n = 2m − 1 in the
second to get

(a− a−1)(a2q; q)∞(a−2q; q)∞(q; q)∞

=
∞∑

m=−∞
a4m+1qm(2m+1) −

∞∑
m=−∞

a4m−1qm(2m−1)

= a(−a4q3; q4)∞(−a−4q; q4)∞(q4; q4)∞

− a−1(−a4q; q4)∞(−a−4q3; q4)∞(q4; q4)∞

using the triple product identity two more times.

To evaluate
∑∞

m=−∞ a4m+1qm(2m+1), put z ← a4q and q ← q2 in the triple
product identity. The ‘sum’ side is

∞∑
m=−∞

(q2)m
2

(a4q)m =

∞∑
m=−∞

q2m
2

a4mqm

=

∞∑
m=−∞

a4mq2m
2+m

= a−1
∞∑

m=−∞
a4m+1qm(2m+1),

17

and the ‘product’ side is

(−a4q3; q4)∞(−a−4q; q4)∞(q4; q4)∞.

To evaluate
∑∞

m=−∞ a4m−1qn(2m−1), put z ← a4q−1 and q ← q2. The ‘sum’
side is

∞∑
m=−∞

(q2)m
2

(a4q−1)m =

∞∑
m=−∞

q2m
2

a4mq−m

=

∞∑
m=−∞

a4mq2m
2−m

= a

∞∑
m=−∞

a4m−1qm(2m−1),

and the ‘product’ side is

(−a4q; q4)∞(−a−4q3; q4)∞(q4; q4)∞.

The next step is to differentiate this with respect to a and then set a = 1, by
logarithmic differentiation. We need not actually carry out the differentiation of
the infinite products on the lhs, because (a− a−1) = 0 when a = 1.

For example, to evaluate
d

da

[
(−a4q3; q4)∞

]
we use

d

dx

[
log[f(x)]

]
=

1

f(x)
f ′(x); f ′(x) = f(x)

d

dx

[
log[f(x)]

]
.

In our example, this leads to

log(−a4q3; q4)∞ = log(1 + a4q3) + log(1 + a4q7)

+ log(1 + a4q11) + · · ·

d

da

[
log(−a4q3; q4)∞

]
=

4a3q3

1 + a4q3
+

4a3q7

1 + a4q7
+

4a3q11

1 + a4q11
+ · · ·

d

da

[
log(−a4q3; q4)∞

]∣∣∣
a=1

=
4q3

1 + q3
+

4q7

1 + q7
+

4q11

1 + q11
+ · · ·

=

∞∑
n=0

4q4n+3

1 + q4n+3
.

The others are similar.

18

We obtain

2(q; q)3∞ = 2(−q3; q4)∞(−q; q4)∞(q4; q4)∞

+

[
(−q3; q4)∞(−q; q4)∞(q4; q4)∞

×
∞∑
n=0

(
4q4n+3

1 + q4n+3
− 4q4n+1

1 + q4n+1
− 4q4n+1

1 + q4n+1
+

4q4n+3

1 + q4n+3

)]
= 2(−q3; q4)∞(−q; q4)∞(q4; q4)∞

×

[
1− 4

∞∑
n=0

(
q4n+1

1 + q4n+1
− q4n+3

1 + q4n+3

)]
.

Now
(−q3; q4)∞(−q; q4)∞(q4; q4)∞ = (−q; q)2∞(q; q)∞

We show this by a sequence of splitting and re-combining. Start by interleaving
the factors to combine (−q3; q4)∞(−q; q4)∞ = (−q; q2)∞, giving

lhs = (−q; q2)∞(q4; q4)∞.

Then factorise the differences of squares (q4; q4)∞ = (−q2; q2)∞(q2; q2)∞:

lhs = (−q; q2)∞(−q2; q2)∞(q2; q2)∞;

interleave to combine (−q; q2)∞(−q2; q2)∞ = (−q; q)∞:

lhs = (−q; q)∞(q2; q2)∞.

Finally, factorise (q2; q2)∞ = (q; q)∞(−q; q)∞ to reach the rhs.

so
(q; q)2∞

(−q; q)2∞
= 1− 4

∞∑
n=0

(
4q4n+1

1 + q4n+1
− 4q4n+3

1 + q4n+3

)
.

Now

φ(−q) = (q; q2)2∞(q2; q2)∞ =
(q; q)∞

(−q; q)∞
(13)

The first equality follows immediately from (10). To see the second, first
interleave one of the (q; q2)∞ and the (q2; q2)∞:

(q; q2)2∞(q2; q2)∞ = (q; q2)∞(q; q)∞.

19

We therefore show

(q; q2)∞ =
1

(−q; q)∞
.

From the interleaving (q; q2)∞(q2; q2)∞ = (q; q)∞, we have

(q; q2)∞ =
(q; q)∞

(q2; q2)∞
,

and by factorising each difference of squares in (q2; q2)∞ we have

(q2; q2)∞ = (q; q)∞(−q; q)∞,

and the result follows.

so, replacing q by −q, we see

φ2(q) = 1 + 4

∞∑
n=0

(
q4n+1

1− q4n+1
− q4n+3

1− q4n+3

)

= 1 + 4
∞∑

m=0

(∞∑
r=1

q(4m+1)r −
∞∑
r=1

q(4m+3)r

)
(where we have changed variable to m = n in order to free n for the next step).
Gather terms having the same power of q

We transform each of the two double sums into a single power series in q.

Take the first sum,
∑∞

m=0

∑∞
r=1 q

(4m+1)r. We would like to re-write this as∑∞
n=0 anq

n, and so have to find the values of the an. For a given n, which
pairs (m, r) give a term q(4m+1)r = qn? Exactly those pairs having m such
that (4m + 1)|n, and each such m has exactly one corresponding r, and so
contributes one to the coefficient an. Therefore, an is the number of m ≥ 0
such that (4m+ 1)|n, i.e., the number of positive divisors d of n having d = 1
(mod 4).

to find

φ2(q) = 1 + 4
∞∑
n=1

 ∑
d|n

d≡1 (mod 4)

1 −
∑
d|n

d≡3 (mod 4)

1

 qn

= 1 + 4

∞∑
n=1

(
d1,4(n)− d3,4(n)

)
qn. (14)

Equating coefficients of powers in φ2(k) =
∑
r2(n)qn now gives the result.

20

8 Sums of four squares

To count the number of ways of expressing an integer as the sum of four squares,
we use the following theorem:

Theorem

r4(n) = 8
∑
d|n
4-d

d.

The proof will start by using Jacobi’s identity:

8.1 Jacobi’s identity

The triple product identity with z ← z2q gives

∞∑
n=−∞

z2nqn
2+n = (−z2q2; q2)∞(−1/z2; q2)∞(q2; q2)∞.

Divide both sides by 1 + 1/z2, which is the first factor in (−1/z2; q2)∞:∑∞
n=−∞ z

2nqn
2+n

1 + 1/z2
= (−z2q2; q2)∞(−q2/z2; q2)∞(q2; q2)∞.

We now take the limit z → i.

The idea is to ‘put z2 = −1’, which will give the rhs the form we will use.
The lhs, though, would be ∑∞

n=−∞(−1)nqn
2+n

1− 1
.

The bottom is zero, and we can see informally that the terms on the top cancel
in pairs:

n (−1)nqn
2+n

(m = 2) −3 −q6
(m = 1) −2 +q2

(m = 0) −1 −q0
0 +q0

1 −q2
2 +q6

21

More formally, break the sum into
∑−1

n=−∞+
∑∞

n=0, and change variables in
the first (as shown) to n = −(m+ 1) to get

∞∑
n=−∞

(−1)nqn
2+n =

∞∑
m=0

(−1)−(m+1)q(m+1)2−(m+1) +

∞∑
n=0

(−1)nqn
2+n

=

∞∑
m=0

−(−1)mqm
2+m +

∞∑
n=0

(−1)nqn
2+n

= 0. (15)

Instead of just setting z = i, then, we must take the limit z → i.

To do so, use l’Hôpital’s rule. First simplify slightly by multiplying top and
bottom of the lhs by z:

lhs =

∑∞
n=−∞ z

2n+1qn(n+1)

z + z−1
.

Now differentiate (with respect to z) top and bottom, cheerfully moving the
d/dz inside the sum: ∑∞

n=−∞(2n+ 1)z2nqn(n+1)

1− z−2

and evaluate at z = i to find the limit of the lhs,

1

2

∞∑
n=−∞

(−1)n(2n+ 1)qn(n+1).

On the rhs we can just set z = i. Combining these, we have Jacobi’s identity,

1

2

∞∑
n=−∞

(−1)n(2n+ 1)qn(n+1) = (q2; q2)3∞.

(Note that the ‘main’ form given in [1] is different, but it is the above form that
we require for the following proof.)

Proof of sums-of-four-squares result

Take q ← q1/2 in Jacobi’s identity as just proved,

(q; q)3∞ =
1

2

∞∑
n=−∞

(−1)n(2n+ 1)qn(n+1)/2,

22

and square both sides to get

(q; q)6∞ =
1

4

∞∑
m,n=−∞

(−1)m+n(2m+ 1)(2n+ 1)q(m
2+n2+m+n)/2.

Split this sum into its positive and negative terms:

(q; q)6∞ =
1

4

 ∞∑
m,n=−∞
m+ n even

+
∞∑

m,n=−∞
m+ n odd

 (−1)m+n(2m+ 1)(2n+ 1)q(m
2+n2+m+n)/2

=
1

4

 ∞∑
m,n=−∞
m+ n even

(2m+ 1)(2n+ 1)q(m
2+n2+m+n)/2

−
∞∑

m,n=−∞
m+ n odd

(2m+ 1)(2n+ 1)q(m
2+n2+m+n)/2

 .

Make a change of variables in each sum. In the first (‘m+ n even’), put

m = r + s;

n = r − s

and in the second (‘m+ n odd’), put

m = r + s;

n = s− r − 1.

In both cases, as (r, s) runs over all pairs of integers, the corresponding pair
(m,n) runs over all pairs of integers subject to the evenness or oddness con-
straint.

For the ‘even’ case,
m = r + s; n = r − s,

any given (r, s) certainly gives rise to a pair (m,n) of integers, and we have
m+ n = 2r, which is even. Conversely, we can invert to find

r =
m+ n

2
; s =

m− n
2

,

and if m+ n is even, then so is m− n, and hence r and s are both integers.

A similar argument applies for the ‘odd’ case.

23

We now have

(q; q)6∞ =
1

4

(∞∑
r,s=−∞

(2r + 2s+ 1)(2r − 2s+ 1)qr
2+s2+r

−
∞∑

r,s=−∞
(2r + 2s+ 1)(2s− 2r − 1)qr

2+s2+r

)

=
1

2

∞∑
r,s=−∞

(
(2r + 1)2 − (2s)2

)
qr

2+s2+r

=
1

2

(∞∑
s=−∞

qs
2
∞∑

r=−∞
(2r + 1)2qr

2+r −
∞∑

r=−∞
qr

2+r
∞∑

s=−∞
(2s)2qs

2

)
.

The non-unity coefficients in the two power series
∑

(2r+1)2qr
2+r and

∑
(2s)2qs

2

make this expression difficult to manipulate further, and so we re-write the two
series using derivatives.

To get
∑∞

r=−∞(2r + 1)2qr
2+r into a more workable form, we expand a term:

(4r2 + 4r + 1)qr
2+r = (1 + 4(r2 + r))qr

2+r, then note that

d

dq

[
qr

2+r
]

= (r2 + r)qr
2+r−1; 4q

d

dq

[
qr

2+r
]

= 4(r2 + r)qr
2+r.

Hence
∞∑

r=−∞
(2r + 1)2qr

2+r =

(
1 + 4q

d

dq

) ∞∑
r=−∞

qr
2+r.

Similarly, one term of
∑∞

s=−∞(2s)2qs
2

is 4s2qs
2

, and

d

dq

[
qs

2
]

= s2qs
2−1; 4q

d

dq

[
qs

2
]

= 4s2qs
2

so
∞∑

s=−∞
(2s)2qs

2

=

(
4q

d

dq

) ∞∑
s=−∞

qs
2

.

We have now reached

(q; q)6∞ =
1

2

(∞∑
s=−∞

qs
2

(
1 + 4q

d

dq

) ∞∑
r=−∞

qr
2+r

−
∞∑

r=−∞
qr

2+r

(
4q

d

dq

) ∞∑
s=−∞

qs
2

)

24

and use

∞∑
s=−∞

qs
2

= (−q; q2)2∞(q2; q2)∞;

∞∑
r=−∞

qr
2+r = 2(−q2; q2)2∞(q2; q2)∞.

The first sum is just the definition of φ(q), which as shown in §6.1 has the
given product form.

For the second sum, use z ← q in the Jacobi triple product identity:

∞∑
r=−∞

qr
2+r =

∞∑
r=−∞

qr
2

qr

= (−q2; q2)∞(−1; q2)∞(q2; q2)∞.

Now

(−1; q2)∞ = (1 + 1)(1 + q2)(1 + q4) · · ·
= 2(−q2; q2)∞,

so
∞∑

r=−∞
qr

2+r = 2(−q2; q2)2∞(q2; q2)∞.

We have

(q; q)6∞ =
1

2

(
(−q; q2)2∞(q2; q2)∞

(
1 + 4q

d

dq

)
2(−q2; q2)2∞(q2; q2)∞

− 2(−q2; q2)2∞(q2; q2)∞

(
4q

d

dq

)
(−q; q2)2∞(q2; q2)∞

)

= (−q; q2)2∞(q2; q2)∞

(
1 + 4q

d

dq

)
(−q2; q2)2∞(q2; q2)∞

− (−q2; q2)2∞(q2; q2)∞

(
4q

d

dq

)
(−q; q2)2∞(q2; q2)∞.

Now logarithmically differentiate

25

For example, to differentiate (−q2; q2)2∞(q2; q2)∞ w.r.t. q, using f ′ = f [log f]′:

log
[
(−q2; q2)2∞(q2; q2)∞

]
= 2 log

[
(1 + q2)(1 + q4)(1 + q6) · · ·

]
+ log

[
(1− q2)(1− q4)(1− q6) · · ·

]
= 2 log(1 + q2) + 2 log(1 + q4) + 2 log(1 + q6) + · · ·

+ log(1− q2) + log(1− q4) + log(1− q6) + · · ·[
log
[
(−q2; q2)2∞(q2; q2)∞

]]′
= 2

2q

1 + q2
+ 2

4q3

1 + q4
+ 2

6q4

1 + q6
+ · · ·

− 2q

1− q2
− 4q3

1− q4
− 6q5

1− q6
− · · ·

= 2

∞∑
n=1

2nq2n−1

1 + q2n
−
∞∑

n=1

2nq2n−1

1− q2n

to find

(q; q)6∞

= (−q; q2)2∞(q2; q2)2∞(−q2; q2)2∞

(
1 + 8

∞∑
n=1

2nq2n

1 + q2n
− 4

∞∑
n=1

2nq2n

1− q2n

)

− (−q2; q2)2∞(q2; q2)2∞(−q; q2)2∞

(
8
∞∑
n=1

(2n− 1)q2n−1

1 + q2n−1
− 4

∞∑
n=1

2nq2n

1− q2n

)

= (−q2; q2)2∞(q2; q2)2∞(−q; q2)2∞

(
1− 8

∞∑
n=1

[
(2n− 1)q2n−1

1 + q2n−1
− 2nq2n

1 + q2n

])
.

Now divide both sides by

(−q; q)4∞(q; q)2∞ = (−q; q)2∞(q2; q2)2∞

= (−q; q2)2∞(−q2; q2)2∞(q2; q2)2∞

The first equality follows immediately from the difference of squares result
(−q; q)∞(q; q)∞ = (q2; q2)∞. For the second step, de-interleave (−q; q)∞ into
(−q; q2)∞(−q2; q2)∞.

to deduce
(q; q)4∞

(−q; q)4∞
= 1− 8

∞∑
n=1

[
(2n− 1)q2n−1

1 + q2n−1
− 2nq2n

1 + q2n

]
.

26

Substituting using (13), and replacing q by −q, we find

φ(q)4 = 1 + 8
∞∑
n=1

[
(2n− 1)q2n−1

1− q2n−1
+

2nq2n

1 + q2n

]

= 1 + 8
∞∑
n=1

[
(2n− 1)q2n−1

1− q2n−1
+

2nq2n

1− q2n

]
− 8

∞∑
n=1

[
2nq2n

1− q2n
− 2nq2n

1 + q2n

]
.

The first sum is just
∞∑

m=1

mqm

1− qm

with its terms written in pairs, and the terms in the second sum can be simplified
to give

φ4(q) = 1 + 8

∞∑
n=1

nqn

1− qn
− 8

∞∑
n=1

4nq4n

1− q4n

= 1 + 8
∞∑
n=1
4-n

nqn

1− qn

= 1 + 8
∞∑
n=1
4-n

nqn
∞∑

m=0

qnm.

We now rearrange slightly and rename n to d

∞∑
n=1
4-n

nqn
∞∑

m=0

qnm =

∞∑
n=1
4-n

∞∑
m=0

nqn(m+1)

=

∞∑
n=1
4-n

∞∑
m=1

nqnm =

∞∑
m=1

∞∑
n=1
4-n

nqnm =

∞∑
m=1

∞∑
d=1
4-d

dqdm

to find

φ4(q) = 1 + 8
∞∑

m=1

∞∑
d=1
4-d

dqdm.

Introduce a new n by writing n = dm, and collect all terms in qn together

27

There will be a contribution of d to the qn term whenever dm = n and 4 - d.
The overall qn term then has coefficient∑{

d : (d ≥ 1) and (∃m ≥ 1 : dm = n) and (4 - d)
}
.

The second clause here is just ‘d | n’, which in the context of the sum implicitly
includes the condition ‘d ≥ 1’, so the double sum becomes

∞∑
n=1

∑
d|n
4-d

dqn.

to conclude

φ4(q) = 1 +
∞∑
n=1

8
∑
d|n
4-d

d

 qn. (16)

Equating powers of q gives the result.

9 Some identities involving φ and ψ

We have

φ(q) + φ(−q) = 2φ(q4); (17)

φ(q)− φ(−q) = 4qψ(q8); (18)

φ(q)ψ(q2) = ψ2(q). (19)

(The last one has a natural counting interpretation and a bijective/enumerative
proof, which may be the subject of a future note.)

To show (17) is fairly straightforward, using the infinite sum form:

φ(q) + φ(−q) =

∞∑
n=−∞

qn
2

+

∞∑
n=−∞

(−q)n
2

=
∑

n even

[
qn

2

+ (−q)n
2
]

+
∑
n odd

[
qn

2

+ (−q)n
2
]

The exponent n2 is odd or even exactly as n is, so this becomes∑
n even

[
qn

2

+ qn
2
]

+
∑
n odd

[
qn

2

− qn
2
]

= 2
∑

n even

qn
2

28

and finally a change of variable gives

2
∑

n even

qn
2

= 2

∞∑
m=−∞

q(2m)2 = 2

∞∑
m=−∞

q4m
2

= 2

∞∑
m=−∞

(q4)m
2

= 2φ(q4).

Showing (18) is slightly more fiddly; proceed as above to get to

φ(q)− φ(−q) = 2
∑
n odd

qn
2

= 2

∞∑
m=−∞

q(2m+1)2

= 2

∞∑
m=−∞

q4m
2+4m+1 = 2q

∞∑
m=−∞

(q4)m(m+1)

As previously, an informal table suggests that the terms from m ∈ {0, 1, 2, . . .}
are the same as those from m ∈ {−1,−2,−3, . . .}, so splitting the sum, chang-
ing variables to m = −(r + 1) in the ‘negative’ one, and re-combining, gives

φ(q)− φ(−q) = 4q
∞∑

m=0

(q4)m(m+1) = 4q
∞∑

m=0

(q8)m(m+1)/2 = 4qψ(q8).

Finally, to show (19), we work with the product forms, (10) and (11), and are
required to show[

(−q; q2)2∞(q2; q2)∞
] [

(−q2; q4)∞(q8; q8)∞
]

= (−q; q2)2∞(q4; q4)2∞.

This immediately is equivalent to

(q2; q2)∞(−q2; q4)∞(q8; q8)∞ = (q4; q4)2∞.

On the lhs, de-interleave (q2; q2)∞ into (q2; q4)∞(q4; q4)∞, and re-order:

lhs = (q4; q4)∞(q2; q4)∞(−q2; q4)∞(q8; q8)∞.

Combine (q2; q4)∞(−q2; q4)∞ into the difference of squares (q4; q8)∞:

lhs = (q4; q4)∞(q4; q8)∞(q8; q8)∞

and finally interleave (q4; q8)∞(q8; q8)∞ = (q4; q4)∞.

10 Sums of four triangular numbers

We can now finally work towards an expression for ψ4(q), which will give us the
main result t4(n) = σ(2n+ 1).

We will use the expressions already found for φ2 and φ4 as follows. Multi-
plying (17) by (18), and using (19), we find

φ2(q)− φ2(−q) = 8qφ(q4)ψ(q8)

= 8qψ2(q4). (20)

29

Considering the power series (14) for φ2(q) leads to:

φ2(q) + φ2(−q) = 2φ2(q2). (21)

Starting with (14), we see

φ2(q) = 1 + 4

∞∑
n=1

(
d1,4(n)− d3,4(n)

)
qn;

φ2(−q) = 1 + 4

∞∑
n=1

(
d1,4(n)− d3,4(n)

)
(−q)n;

φ2(q) + φ2(−q) = 2

1 + 4
∞∑

n=2
n even

(
d1,4(n)− d3,4(n)

)
qn


= 2

[
1 + 4

∞∑
m=1

(
d1,4(2m)− d3,4(2m)

)
(q2)m

]
.

We now claim d1,4(2m) = d1,4(m). Any factor of m is a factor of 2m; we show
that the ‘extra’ factors of 2m make no contribution to d1,4(2m).

Take a factor c of 2m which is not also a factor of m. Then 2m = ac for
some a. Clearly 2 | ac; we claim 2 | c. Suppose not; then we must have 2 | a,
say a = 2b. But then 2m = (2b)c, so m = bc, whereas our assumption was
that c - m. For this extra factor c, then, c ∈ {0, 2} (mod 4), and c makes no
contribution to d1,4(2m).

The same argument shows that d3,4(2m) = d3,4(m), and we conclude that

φ2(q) + φ2(−q) = 2

[
1 + 4

∞∑
m=1

(
d1,4(m)− d3,4(m)

)
(q2)m

]
= 2φ2(q2)

as required.

By multiplying (20) and (21), then using (19), we find

φ4(q)− φ4(−q) = 16qψ2(q4)φ2(q2) = 16qψ4(q2)

30

and using the power series (16) for φ4(q), we have

lhs = 8
∞∑

m=0

∑
d|m
4-d

dqm − 8
∞∑

m=0

∑
d|m
4-d

d(−q)m

= 16
∞∑

m=1
m odd

∑
d|m
4-d

dqm;

rhs = 16
∞∑
n=0

t4(n)q2n+1.

Equating coefficients gives

t4(n) =
∑

d|(2n+1)
4-d

d.

We finally note that ‘4 - d’ is superfluous for divisors d of the odd integer 2n+ 1,
and we have the result:

t4(n) = σ(2n+ 1).

This completes the proof of (2), and hence also the explanation of isToad’s
behaviour.

References

[1] Bruce C. Berndt. Number Theory in the Spirit of Ramanujan, volume 34 of
Student Mathematical Library. American Mathematical Society, 2006.

[2] Peter J. Cameron. Combinatorics: Topics, Techniques, Algorithms. Cam-
bridge University Press, 1994.

[3] Marc LeBrun. Computist quiz. http://www.hackersdelight.org/quiz.

pdf, 2004.

31

